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ABSTRACT 

 

This thesis investigates detection of cattle rustling by using low-cost Internet-

of-Things (IoT) equipment. Recently, cattle localization based on LoRa received 

signal strength indicator (RSSI) values has gained a lot of attention since it requires 

low-power consumption and supports long-range communications. However, LoRa 

RSSI based localization is known to be inaccurate due to the frequency-changing 

nature of LoRa signals. Therefore, instead of trying to estimate an exact location, this 

paper focuses on detection whether an animal-attached sensor node is inside or 

outside the fence area. We propose the use of transmitter reference points (RPs) 

installed in selected locations to help determine the status of each animal. 

Experimental results indicate that, when received RSSIs from the same transmitter-

receiver locations change over days, the use of RSSIs from transmitter RPs instead of 

RSSIs from a previous day as the train dataset allows the detection algorithm to adapt 

over time and provide higher detection accuracies in comparison to detection without 

using transmitter RPs. Finally, comparisons among well-known classification 

algorithms, including k-nearest neighbors (k-NN), support vector machine (SVM), 

decision tree, and random forest, are performed in terms of detection accuracies.



 

 iv  

ACKNOWLEDGEMENT 

 

First and foremost, I would like to earnestly acknowledge the sincere efforts 

and valuable time given by my supervisors, especially Dr. Poompat Saengudomlert 

for his invaluable patience, always giving feedback sessions, and paying attention to 

every single detail of all my work. Besides, I would also like to appreciate my co-

advisor Dr. Waleed S. Mohammed for his helpful comments, persisting support and 

unflinching encouragement. This thesis work would not exist without their 

tremendous motivation and help.  

I would like to thank my beloved family who unwaveringly support me and 

always cheer me up. I appreciate my father for kindly creating the solid base towers 

with cover protection for my LoRa receivers. Their unfailing faith and love for me has 

greatly encouraged me to keep working hard. Without that support I could not have 

succeeded in this project. 

 Last but not least, I would like to express my special thanks of gratitude to 

BU-CROCCS (Bangkok University Center of Research in Optoelectronics, 

Communication and Computational Systems) for location and resources in conducting 

this research. 

  



 

 v  

TABLE OF CONTENTS 

 

 Page 

ABSTRACT …………………………………………………………………… iii 

ACKNOWLEDGEMNETS …………………………………………………… iv 

LIST OF TABLES …………………………………………………………….  v 

LIST OF FIGURES …………………………………………………………… vii 

CHAPTER 1: INTRODUCTION ………………………………………………1 

1.1 Background……………………………………………………………….1 

1.2 Objective …………………………………………………………………4 

1.3 Scope and Limitation ……………………………………………………5 

1.4 Thesis Outline……………………………………………………………5 

CHAPTER 2 LITERATURE REVIEW ……………………………………….6 

2.1 IoT……………………………………………………………………….6 

2.2 Smart Farm………………………………………………………………8 

2.3 Localization……………………………………………………………..12 

2.4 LoRa and LoRaWAN …………………………………………………..13 

2.4.1 LoRa Parameters……………………………………………………....15 

2.4.2 LoRaWAN……………………………………….……….…….…..…18 

2.5 LoRa RSSI Based Localization…………………………………………19 

2.6 Classification Algorithms.……………………….……………………...21 

2.6.1 k-Nearest Neighbors.……………………….…………………………21 



 

 vi  

BIBLIOGRAPHY …………………………………………………………….44 

APPENDICES ………………………………………………………….….….49 

BIODATA …………………………………………………………………….54 

 
 

 
TABLE OF CONTENTS (Continued) 

 
Page 

 

CHAPTER 2 LITERATURE REVIEW (Continued)  

2.6.2 Support Vector Machine………………….………………………….22 

2.6.3 Decision Tree.…………………….…………………………………..23 

     2.6.4 Random Forest.………… ……………….…………………………...23 

CHAPTER 3 METHODOLOGY WITHOUT TRANSMITTER REFERENCE 

POINTS ……………………………………………………………………….25 

3.1 System Implementation ………………………………………………...25 

3.2 Test Area.………….….…………………….…………………………..27 

CHAPTER 4 RESULT WITHOUT TRANSMITTER REFERENCE 

POINTS………………………………………………………………………..30 

4.1 Experimental Results without Transmitter RPs………………………...30 

CHAPTER 5 PERFORMANCE IMPROVEMENT USING TRANSMITTER 

REFERENCE POINTS………………………………………………………..34 

5.1 Methodology with Tranmitter RPs……………………………………...34 

5.2 Results with Tranmitter RPs……………………..……………………...37 

5.3 Performance Comparisons among Different Classification Algorithms..39 

CHAPTER 6 Conclusion……………………………………………………....42 

 



 

 vii  

LIST OF TABLES 

 

Page 

Table 2.1 LoRa technology specifications.……………………………………..…..14 

Table 2.2 Advantage and disadvantage of LoRa.………………………………..….20 

Table 4.1 Example raw data received on 11/11/2021.…………………………..…..32 

Table 5.1 Number of datapoints from different transmitter nodes.……………..…..35 

 

 

 

 

 
 
 
 
 
 
 

 

 
 
 
 

 

 

 

 

 

 



 

 viii  

LIST OF FIGURES 

 
Page 

 

Figure 2.1 IoT for smart home………………………………………………………...7 

Figure 2.2 Smart farm…………………………………………………………………9 

Figure 2.3 Smart necklace……………………………………………………………11 

Figure 2.4 Examples of the RSSI range, with the RSSI value decreasing with the  

       transmission distance…………………………………………………..…13 

Figure 2.5 Peer-to-peer communication between transmitter and receiver node.……15 

Figure 2.6 LoRaWAN architecture………………………………………………......19 

Figure 3.1 Components of cattle rustling detection system based on LoRa RSSIs  

       ……..………..…………..………..………..………..…………..…….....26 

Figure 3.2 (A) Test equipment with four transmitter sensor nodes and five receiver 

       gateway nodes based on LoRa hardware, (B) Components of a   

       transmitter node, (C) Components of a receiver node…………………...27 

Figure 3.3 Fence area for experiments, with latitude and longitude coordinates of the 

      four corners…..………..………..………..………..………..……………28 

Figure 3.4 Receiver gateway node mounted on a solid base with cover protection 

        …..………..………....………..…………..………...………..………….29 

Figure 4.1 Precisions, recalls, and accuracies for the 11/11/2021 dataset for different 

       values of k for the k-NN algorithm………....….…….…………..……..32 

Figure 4.2 Precisions, recalls, and accuracies for the 11/11/2021 and 18/01/2022  

      datasets with (1) train and test datasets on the same day with 70% of  

      datapoints for training (2) train and test datasets on different days……..33 



 

 ix  

LIST OF FIGURES (Continued) 

Page 

Figure 5.1 Deployment of transmitter RPs both inside and outside the fence area...34 

Figure 5.2 The first 200 datapoints from transmitter RP 1 to all five receivers  

      (denoted by RX1 to RX5) on 15 March 2022…………………………..36 

Figure 5.3 The first 200 datapoints from the buffalo transmitter to all five receivers  

      (denoted by RX1 to RX5) on 15 March 2022…………………………..37 

Figure 5.4 Precisions, recalls, and accuracies for the 15/03/2022 and 29/03/2022  

      datasets with (1) train and test datasets on different days (2) train and test 

      datasets on the same day with datapoints from RPs for training………..38 

Figure 5.5 Precisions, recalls, and accuracies for the 15/03/2022 dataset for different 

      values of k for the k-NN algorithm……………………………………...39 

Figure 5.6 Accuracies from well-known classification algorithms when transmitter

      RPs are used……………………………………………………………..40  



 

1 

CHAPTER 1  

INTRODUCTION 

1.1 Background 

The Internet of things (IoT) refers to a system of computing devices that 

interconnect machines, objects or even living things such as people and animals. IoT 

enables the ability to transmit data over a network without requiring human-to-human 

or human-to-computer interactions. Smart farm is one of several applications that 

utilize IoT technology to improve agricultural productions. It is a concept of farming 

management using information and communication technologies (ICT) to increase the 

quantity and quality of products. It is well known that smart farms provide numerous 

benefits to agriculture sectors such as rice planting, vegetable and fruit growing. In 

fact, smart farms not only cover branches of vegetation planting, it is also related to 

animal husbandry. In the countryside, many people depend on agriculture and on 

animal husbandry to make a living and rise above poverty. Animal husbandry is one 

of the occupations that require a lot of time and efforts to make a profit since farmers 

have to take care of animals closely all the time. It is imperative that farmers do not 

lose their animals. Fortunately, modern ICT can help reduce the work load 

significantly. Integrating IoT technology with animal husbandry, referred to as 

livestock monitoring, is a topic that has gained a lot of attention. 

Livestock monitoring involves observing animal behaviors related to movement, 

reproduction, nutrition, and the cattle health by applying modern technologies. From 

previous researches, two main aspects of livestock monitoring are health monitoring 

and location monitoring. Livestock health monitoring applications allow farmers to 
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detect animal diseases in individual cattle early on in order to quickly evaluate 

responses to veterinary treatments (Abdullahi, et al., 2019) (Chaudhry, et al., 2020) 

(Luo, et al., 2020). Livestock location monitoring, also known as cattle tracking, 

allows farmers to secure and protect the livestock from thefts, natural disasters and 

organized crimes. 

Over the last few years, progresses in low-power wireless network 

technologies have attracted a lot of new applications. Cattle tracking is one such 

application. Several studies have tried to solve the problem of localization with 

varying degrees of accuracy. 

For cattle on large farms, it is imperative to utilize wireless technologies to 

specify their locations. Global Positioning System (GPS) has been deployed to track 

and monitor animals in order to conserve and protect the animals as well as their 

natural habitats (Panicker, et al., 2019) (Li, et al., 2018) (Zinas, et al., 2017) (Molina, 

et al., 2019). However, there are challenges in using GPS modules such as high 

battery consumption and high hardware costs, making the GPS approach not so 

attractive. Tracking-based IoT applications require low-power consumption and long-

range communications. Recently, there are several low-power wide area network 

(LPWAN) technologies that use radio frequencies for data transmissions such as 

Sigfox, LoRa, etc. In particular, with transmission distances up to 15 km in rural 

areas, LoRa is suitable for monitoring cattle locations in large farm areas. Its low-

power consumption is appropriate for IoT systems that work for several years on 

small batteries.  LoRa can be applied to connect sensor devices, gateways, etc., 

wirelessly to the cloud. For example, the authors in (Ayele, et al., 2018) integrated 
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LoRa and Bluetooth system to monitor herds of wild animals by deploying ultra-low 

power IoT devices. 

        The main goal of this thesis is to create a cattle rustling detection system in 

which sensor nodes are attached to the cattle to determine their zones of locations 

(inside or outside the fence) on a farm in Vientiane, Laos.  Towards this goal, LoRa 

received signal strength indicator (RSSI) values are used for classification between 

inside and outside zones. In general, an RSSI reflects the distance between a 

transmitter and a receiver but is sensitive to physical characteristics of the 

communication channel.  

       Two kinds of LoRa RSSI based localization have been studied previously, 

namely indoor localization (Ali, et al., 2021) (Anjum, et al., 2019) (Choi, et al., 2018) 

and outdoor localization (Panicker, 2019) (Li, 2018) (Zinas, 2017), (Choi, 2018) 

(Anjum, 2020) (Aernouts, 2018) (Lam, 2017) (Fargas, 2017) (Joshita, 2021) (Dieng, 

2017) (Dieng, 2019) (Munoz, 2020) (Stojkoska, 2018). In this thesis focuses on 

outdoor localization since a large outdoor farm is considered. There are several 

studies regarding animal tracking using LoRa RSSIs combined with localization 

algorithms. In (Choi, et al., 2018), the authors present LoRa RSSI-based outdoor 

positioning to evaluate the accuracy of the fingerprinting approach. Moreover, they 

also compare their proposed LoRa RSSI-based fingerprinting to the GPS method to 

show the reduction of battery consumption. The use of machine learning techniques 

such as support vector machine and linear regression has been investigated for the 

fingerprinting approach in LoRa RSSI-based localization (Anjum, et al., 2020). In 

(Aenout, et al., 2018), the authors collected LoRa RSSI datasets from 68 LoRa Wide 

Area Network (LoRaWAN) base stations spread out in real city environments with 
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buildings that can obstruct LoRa signals, and used LoRa RSSI-based fingerprinting 

with the k-nearest neighbor (k-NN) algorithm for outdoor localization. They found the 

average error to be as large as 400 m. The authors of (Lam, et al., 2017) tested LoRa 

RSSI based localization for outdoor environments, with the purpose of reducing noise 

in the system caused by obstacles, electronic interference, etc., by increasing from 6 

to 14 receiver anchor points. It was demonstrated that the localization error is still 

high (more than 15 m) with 14 receiver anchor points. 

In the above-mentioned papers related to LoRa RSSI-based localization using 

the fingerprinting approach, experimental results indicate that LoRa RSSIs provide 

limited accuracy, especially when the number of receivers is small. Therefore, this 

research aims to classify the animal location (inside or outside the fence area) instead 

of estimating the exact location in order to avoid high installation costs from a lot of 

receiver anchor points. In addition, this thesis proposes an approach of classification 

by using transmitter reference points (RPs) that are mounted inside and outside the 

fence area on a farm. An RP is an immobile transmitter that operates in the same way 

as the animal-attached transmitter sensor node. Since RSSIs for localization on 

different days may vary from the changes in environments on a daily basis, the use of 

RPs provides reference RSSI data that can adapt over time, making the classification 

more accurate compared to using reference/train data from the previous day. 

1.2 Objective 

- Study applications of IoT technologies for animal husbandry. 

- Develop a WSN with LoRa technologies and to detect buffaloes leaving the 

fence area based on LoRa RSSI values. 
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- Evaluate the performance of the developed system in an authentic farm. 

1.3 Scope and Limitation 

- A sensor node is used to represent a buffalo. No actual buffalo is used in the 

experiments. 

- LoRa technologies are used for wireless communications. 

- The research focuses on detection of buffaloes leaving the fence area, but not on 

estimating exact locations of buffaloes. 

1.4 Thesis Outline 

This thesis report is organized as follows. Chapter 2 provides a literature review 

on relevant technologies and related work. Chapter 3 proposes methodology without 

transmitter RPs. Chapter 4 shows the result of experiments without transmitter RPs. 

Chapter 5 provides the proposed approach by using transmitter RPs. Finally, Chapter 

6 concludes the thesis.  
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CHAPTER 2  

LITERATURE REVIEW 

This chapter is organized as follows. Section 2.1 presents background of IoT 

and its IoT applications. Section 2.2 describes smart farm and livestock monitoring. 

Section 2.3 present localization technique. Section 2.4 introduces s LoRa/LoRaWAN 

technology. Section 2.5 presents existing work involving localization based on LoRa 

RSSIs for indoor and outdoor environments. Finally, Section 2.6 introduce 

classification techniques used in this thesis. 

2.1 IoT   

IoT is a network of electronic devices that are connected to the Internet, 

allowing us to either control devices or receive data from them using our smartphones 

or computers from everywhere around the world. IoT provides a platform that allows 

people to connect electronic devices and control them, possibly with big data 

technology. It helps increase efficiency in work performance, bring economic 

benefits, and minimize the need for human involvement. In addition, IoT will change 

our daily life to be more comfortable and also reduce our fatigue. Most IoT projects 

are using wireless sensor networks (WSNs), which refer to a group of sensor nodes 

that exchange data in a wireless network. As a WSN is easy to install and flexible in 

the field for system integrators, it becomes an essential part of IoT solutions. 

An IoT system could be a single gadget, for instance a wearable health 

tracking device, or as complex as a smart city with sensors deployed across the entire 

city. One of the most outstanding examples of IoT projects is the smart home as 
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shown in figure 2.1. It allows us to control every connected device in our home, from 

a device used to water the garden outside to all electrical equipment inside the house 

or even a thermostat in the bathroom. In general, any object that can be connected to 

the internet will be a candidate for an IoT device. 

Figure 2.1: IoT for smart home 

 

IoT is regarded as a significant technology that can improve almost all 

activities in our lives to become modern. Most of the devices, which have not 

previously been connected to the Internet, can be 8 networked and operate like smart 

devices. IoT provides many benefits to several sectors such as agriculture, healthcare, 

automobile, business or even industrial organizations. Most modern enterprises are 

already taking advantage of IoT to automate and simplify many of their daily tasks. 

According to (Mallon, n.d.), the advantages of IoT technology are as follows: 

            • IoT promotes efficient resource utilization.  

• IoT helps reduce human labor in many sectors.  
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• Applying IoT will lower the cost of production and increase the productivity. 

 • IoT makes analytics decisions faster and more accurate.  

• IoT promotes real-time marketing of products.  

• IoT enhances new client experiences.  

• IoT guarantees high-quality data and secure processing 

2.2 Smart Farm 

Smart farm is one of several applications that utilize IoT technology to 

improve agricultural productions. It is a concept of farming management using 

information and communication technologies (ICT) to increase the quantity and 

quality of products. It is well known that smart farms provide numerous benefits to 

agriculture sectors such as rice planting, vegetable and fruit growing. In figure 2.2, the 

integrated technology with the agriculture sector allows the farmer to see the real-time 

status of the farm. In addition, other devices on the farm can also collect data and 

make intelligent decisions to assist the farmer. 
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Figure 2.2: Smart farm 

 

Source: SPsmartplants. (2022). Smart Green House. 

Retrieved from http//: www.spsmartplants.com 

The general issues that smart farm targets to solve include aspects such as how 

much fertilizer to apply, time of application, the specific areas to be applied, and 

which resources are needed for plant protection. With smart farm, farmers find it easy 

to measure variables and process data with precision. This enables tasks to be much 

simpler, providing improvement of yields, cutting costs, moving towards sustainable 

agriculture, and also increasing the quality of production. Applying the IoT 

technology to the farm could help crop treatment such as accurate planting, watering, 

pesticide application and harvesting, which directly affect production rates. Weather 

predictions and soil moisture sensors allow for water use only when and where 

needed. Thus, smart farm will save the farmer money and labor compared to 

traditional farm. 

http://www.spsmartplants/
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In fact, smart farm not only covers branches of vegetation planting, it is also 

related to animal husbandry. Animal husbandry is one of the occupations that require 

a lot of time and efforts to make a profit since farmers have to take care of animals 

closely all the time. It is imperative that farmers do not lose their animals. 

Fortunately, modern ICT can help reduce the work load significantly. Integrating IoT 

technology with animal husbandry, referred to as livestock monitoring, is a topic that 

has gained a lot of attention.  

Livestock monitoring involves observing animal behaviors related to 

movement, reproduction, nutrition, and the cattle health by applying modern 

technologies as shown in figure 2.3. From previous researches, two main aspects of 

livestock monitoring are health monitoring and location monitoring. Livestock health 

monitoring applications allow farmers to detect animal diseases in individual cattle 

early on in order to quickly evaluate responses to veterinary treatments 

(Abdullahi,2019) (Chaudhry, 2020) (Luo, 2020). Livestock location monitoring, also 

known as cattle tracking, allows farmers to secure and protect the livestock from 

thefts, natural disasters and organized crimes. 
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Figure 2.3: Smart necklace 

  

Source: FarmingUK Team. (2015). High tech 'cow bell' brings revolution to cattle 

movement. 

Retrieved from http//: www.farminguk.com  

 

           Over the last few years, progresses in low-power wireless network 

technologies have attracted a lot of new applications. Cattle tracking is one such 

application. Several studies have tried to solve the problem of localization with 

varying degrees of accuracy. For cattle on large farms, it is imperative to utilize 

wireless technologies to specify their locations. Global Positioning System (GPS) has 

been deployed to track and monitor animals in order to conserve and protect the 

animals as well as their natural habitats (Panicker, 2019) (Li, 2018) (Zinas, 2017) 

(Molina, 2019). Nevertheless, using GPS modules is a solution with some limitations 

such as high battery consumption and high hardware costs, making the GPS approach 

not so attractive. 
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2.3 Localization  

 Localization is the process of finding the position of a sensor node in a 

wireless sensor network (WSN). The easiest way to find the exact location is 

attaching a GPS module to the node. However, there are challenges when a large 

number of nodes exist since GPS modules are expensive and consume a lot of power. 

In addition, GPS cannot be used indoor.  Therefore, several methods have been 

proposed to solve the issue of localization instead of using GPS such as triangulation, 

trilateration, time of arrival (TOA), and received signal strength indicator (RSSI) 

(Kulaib, 2011). This paper applies the RSSI technique, which is commonly used for 

sensor node localization. In this research, the system location always has data 

transmissions between transmitters and receivers; to finding a node location is mainly 

based on the distances between the anchor nodes and node of interest (with unknown 

location). The RSSI is used to measure the received signal strength to estimated 

distance between the transmitter and the receiver. As the distance between the 

transmitter and the receiver increases, the signal strength decreases as shown in figure 

2.4. The RSSI values are measured in dBm and typically have negative values ranging 

between 0 dBm (excellent signal quality) and -100 dBm (extremely poor signal 

quality). 
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transmission distance 

Figure 2.4: Examples of the RSSI range, with the RSSI value decreasing with the      

 

 

2.4 LoRa and LoRaWAN 

LoRa is a combination of two terms: Long and Range. It is a wireless radio 

frequency technology with low power consumption and provides secure data 

transmissions for M2M and IoT applications. LoRa is based on chirp spread spectrum 

(CSS) modulation, which has low power characteristics like frequency-shift keying 

(FSK) modulation but can be used for longer ranges with the transmission distance up 

to 15 km in rural areas. LoRa can be applied to connect devices, sensors, gateways, 

machines, animals, people, etc., wirelessly to the cloud. 

LoRa technologies use license-free sub-gigahertz radio frequency bands in 

different regions. In the USA, it operates in the 915 MHz band. In Europe, it operates 

in the 868 MHz band. In Asia, it operates in the 433-to-434 MHz, 865-to-867 MHz, 

and 920-to-923 MHz bands. In theorical, the use of low bandwidth 400 MHz bands 
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has much lower power limits than 900 MHz in the ISM Bands. 433 MHz uses for 

keyless entry and other low data rate or cost sensitive application. Due to this thesis 

based on low-cost equipment, the use of 433 MHz is more appropriate. Table 2.1 

summarizes key specifications of LoRa.  

Table 2.1: LoRa technology specifications (EverythingRF, 2018) 

Governing body LoRa Alliance 

Frequency ISM 433/868/915 MHz 

Range Up to 5 km (Urban) and 15 km (Rural) 

Data rate 0.3 - 27 kbps 

Modulation CSS modulation based on FM technology 

Standard 801.15.4g 

Error detection 32-bit CRC 

 

LoRa Single channel gateway 

Single channel gateway is a LoRa device that operates as a gateway by 

transmitting LoRa packets to the network. It can only receive on one channel and one 

spreading factor at the same time, while multi-channel gateway can receive up to 8 

channels and 6 spreading factors. A single channel is not much expensive compared 

with multi-channel gateway. 

This thesis aims to use offline gateway which is peer-to-peer communication 

in single channel mode by using 5 LoRa receiver gateway with 1 transmitter for RSSI 

data transmission. The sensor node which is the transmitter can be configured to 
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periodically transmit the RSSI data in dBm. The receiver node can listen to the 

incoming data and store data to a memory card. The receiver node can also send an 

acknowledgment message back to the transmitter node when the message is received. 

Figure 2.5: Peer-to-peer communication between transmitter and receiver node 

 

2.4.1 LoRa Parameters 

The LoRa specification in Table 2.1 is the standard which is set from 

manufacturers to use in general situations for both indoor and outdoor areas. 

Adjustment of LoRa parameters to correspond with user scenario is possible. More 

specifically, it is possible to adjust the bandwidth, the spreading factor, and the coding 

rate in LoRa transceiver modules to influence the range, the data rate and penetration 

of LoRa signals. These three parameters will impact the operations of transceivers. 

Each parameter can be explained as follows (Markqvist, 2020): 

Bandwidth 

Bandwidth (BW) is the frequency range of the chirp signal used to carry the 

baseband data. LoRa can be configured to use bandwidths in pre-determined steps 

from 7800 Hz to 500,000 Hz in the sub-GHz bands, and from 250 kHz to 1.6 MHz in 
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the 2.4 GHz band. The default bandwidth of LoRa RFM96W module is 125000 HZ. 

Selecting a narrower bandwidth will result in a slower transfer rate, but will increase 

the transmission range. On the other hand, selecting a wider bandwidth will result in 

an increased data rate, but will decrease the transmission range. 

Spreading Factor 

In LoRa, the value of Spreading Factor (SF) is the number of bits per data 

symbol, and its power of 2 is the number of chips used to represent each symbol. A 

symbol refers to one or more bits of data, and can be a kind of waveform or a code. 

The symbol rate is the number of symbols transferred per time unit. It could be equal 

to or less than the bit rate. The following formula is the relationship between the 

symbol rate, BW, and SF. 

𝑅𝑠 =  
BW

2𝑆𝐹
 

Rs = Symbol Rate 

SF = Spreading Factor 

BW = Bandwidth 

If a higher SF is selected, each payload data symbol will be spread out over 

more chips, which means there will be more processing gain at the receiver side. 

LoRa can be configured for SFs between 7 and 12. The default SF of LoRa RFM96W 

module is 7. A higher SF also increases the time on air, which increases energy 

consumption, reduces the data rate, but improves the communication range. For 
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successful packet transmissions, the choice of the SF and the modulation method must 

be consistent between a transmitter and a receiver. 

Coding Rate 

 In LoRa modulation, forward error correction is applied in every data packet 

transmission. This operation is done by encoding each group of 4-bit data into a 5-bit, 

6-bit, 7-bit, or 8-bit codeword. The corresponding code rates are usually specified as 

fractional numbers equal to 4/5, 4/6, 4/7, or 4/8. The default code rates of LoRa 

RFM96W module is 4/5. Using extra bits allows LoRa signals to tolerate short 

interferences and become more reliable.  The Coding Rate (CR) can be adjusted 

according to channel conditions for data transmissions. When channel conditions 

become poorer, it is recommended to increase the CR. However, increasing the CR 

will also increase the duration for data transmissions (KWKWII, 2018). 

The following formula can be used to calculate the bit rate (Rb) in terms of the 

BW, the CR, and the SF. 

𝑅𝑏  =  𝑆𝐹   x    

4
4 + 𝐶𝑅

2𝑆𝐹

𝐵𝑊

    x   1000 

SF = Spreading Factor (7, 8, 9, 10, 11, 12) 

CR = Coding Rate (1, 2, 3, 4) 

BW = Bandwidth in kHz (7.8, 10.4, 15.6, 20.8, 31.25, 41.7, 62.5, 125, 250, 

500) 
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2.4.2 LoRaWAN 

LoRaWAN refers to a low-power wide-area network protocol developed by 

LoRa Alliance and is freely available. It is a point-to-multipoint networking protocol 

that uses the LoRa modulation scheme. LoRaWAN offers long-range bi-directional 

communication between sensors and base stations at distances up to 15 km with very 

low power consumption, allowing operations for up to ten years without having to 

replace the batteries. 

The LoRaWAN network architecture consists of 4 parts, which are end 

devices, gateways, servers and applications as shown in figure 2.5. The network is 

typically based on a star-of-stars topology, where the gateways perform as a bridge 

that forwards data between a central network server terminal and end-device sensors. 

The end devices use a wireless single-hop data transfer to one or many gateways, 

which are connected to network servers via standard IP connections. The applications 

act as displays to monitor as well as analyze output data from end-devices, for 

instance sensor nodes, etc. 
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Fig 2.6: LoRaWAN architecture 

 

 

• An end-device such as a sensor node is an object with an embedded low-

power communication device. 

• A gateway is the antenna unit that receives broadcasts from end devices and 

sends data back to end devices. 

• A network server is a server that routes messages from end devices to the 

relevant application, and back. 

• An application is a piece of software running on a server (The Things 

Network, n.d.). 

2.5 LoRa RSSI Based Localization 

 Recently, the LoRa technology has received lots of attention. Several studies 

use the LoRa technology to implement indoor and outdoor positioning system. Due to 

the variation of RSSI values over time, it is a challenge to maintain accurate. In 

general, indoor environments are more complex than outdoor because there are 

several factors that can weaken signals, including obstacles, noise from electronic 

https://www.thethingsnetwork.org/docs/devices/
https://www.thethingsnetwork.org/docs/gateways/
https://www.thethingsnetwork.org/docs/network/
https://www.thethingsnetwork.org/docs/Applications/
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devices, and human movement. Therefore, the authors of (Ali, 2019) proposed LoRa 

technology integrated with deep learning methods as a solution for the use of 

fingerprinting in indoor localization. Based on good penetration capability of LoRa 

signals, their use with the deep learning approach helps solve the issue of changing 

environmental conditions. They investigated how accurate the model produced by the 

training process in estimating the location in a dynamic environment.  

In outdoor localization, with the LoRa transmission distance up to 15 km in 

rural areas, several researchers take this advantage to apply LoRa to IoT application 

such as livestock monitoring. In (Dieng, 2019), the authors proposed an RSSI-based 

distance estimation scheme for localization of cattle communicating with LoRa. The 

proposed solution is to decrease the cost of cattle localization with GPS and allow 

accurate localization of cattle without GPS by using a LoRa RSSI technique. 

Although RSSI is a common technique that many IoT application apply, there is a 

challenge in accuracy. The use of RSSI has advantages and disadvantages as shown in 

Table 2.2. 

Table 2.2: Advantage and disadvantage of LoRa 

Advantage Disadvantage 

- It is cost-efficient. - It is extremely sensitive to spectrum 

interference including noise and multipath 

fading. 

- It is easy to implement. - It can require fingerprinting. 

- It is compatible with the majority of the 

technologies. 

- Lower accuracy 

- Low hardware requirements  
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Several research in terms of LoRa RSSI based outdoor localization have been 

studied earlier, including (Panicker, 2019) (Li, 2018) (Zinas, 2017), (Choi, 2018) 

(Anjum, 2020) (Aernouts, 2018) (Lam, 2017) (Fargas, 2017) (Joshita, 2021) (Dieng, 

2017) (Dieng, 2019) (Munoz, 2020) (Stojkoska, 2018). 

2.6 Classification Algorithms 

 Classification is a technique where we categorize data into a given number of 

classes. The main goal of classification is to determine the category or class of new 

observations on the basis of training data. There are a lot of classification technique. 

Applying each technique depends on the category of data collected. Choosing the 

technique wisely will lead to an efficient result. The common techniques that have 

been used widely in machine learning and will be adopted in this thesis are as follows: 

• k -nearest neighbors 

• Support vector machine 

• Decision tree classification 

• Random forest classification 

2.6.1 k-Nearest Neighbors 

k-nearest neighbors (k-NN) is a data classification method that uses a set of 

datapoints and their classes to predict the class value for a new datapoint by 

considering its k nearest datapoints. It stores all the available data and classifies a new 

data point based on the similarity. When a new datapoint appears, it can be easily 

classified into one category by comparing it to the training data. 
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Pros: 

• k-NN is simple and is the easiest to perform. 

• There is no require to build a model, tuning many parameters, or make 

additional assumptions like some of the other classification algorithms. 

• It is flexible and can be used for classification, regression, and search. 

Cons: The algorithm will get significantly slower as the size of data increases. 

2.6.2 Support Vector Machine 

 Support vector machine (SVM) is one of the most popular machine learning 

algorithms, which is used for classification as well as regression problems. The goal 

of the SVM algorithm is to create the best line or plane that can divide a multi-

dimensional space into classes so that we can easily put the new datapoint in the 

correct category. SVM can be of two types (Javatpoint.com) 

• Linear SVM: Linear SVM is used for linearly separable data. If a data set can 

be classified into two classes by using a single straight line or plane, then such 

a data set is termed as linearly separable, and the classifier is called a Linear 

SVM classifier. 

• Non-linear SVM: Non-Linear SVM is used when data are not linearly 

separable. If a data set cannot be classified by using a line or plane, then such 

a data set is not linearly separable, and the classifier is called a non-linear 

SVM classifier.  
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Pros:  

• SVM works relatively well when there is a clear margin of separation between 

classes. 

• SVM is more effective in high-dimensional spaces. 

Cons: The algorithm is mathematically complex and computationally expensive. 

2.6.3 Decision Tree 

 Decision tree is a non-parametric machine learning method that used a tree-

like model for solving both classification and regression problems The goal is to 

create a training model that can use to predict the class or value of the target variable 

by learning simple decision rules inferred from training data. 

Pros:  

• Simple to understand and visualize. 

• Can handle both numerical and categorical data. 

• When compared to other algorithms, decision trees require less effort for data 

preparation and pre-processing. 

Cons: A few changes in the data can affect a large change in the structure of the 

decision tree causing instability. 

2.6.4 Random Forest 

 Random forest algorithm is a classifier that consists of many decision trees. 

Instead of relying on one decision tree, it takes the prediction from each tree. Based 
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on the majority vote of predictions, the algorithm predicts the final result.  The large 

number of trees reduces the overfitting of data sets and increases precision. This 

algorithm can handle a data set containing continuous variables, which is the 

weakness of the decision tree algorithm. 

Pros:  

• It can handle large data sets efficiently. 

• Can perform both classification and regression tasks. 

• It provides a higher level of accuracy in predicting outcomes over the decision 

tree algorithm. 

Cons: Not appropriate for real-time prediction, difficult to implement, and highly 

complex when compared to decision trees. 
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CHAPTER  3 

METHODOLOGY WITHOUT TRANSMITTER REFERENCE POINTS 

This chapter presents the methodology used in this thesis to create a cattle 

rustling detection system in which sensor nodes with LoRa modules are attached to the 

cattle to detect whether each animal is inside or outside the fence area. 

3.1 System Implementation 

The developed system can be divided into four main parts: animal-attached 

sensor nodes, LoRa gateways, an RSSI database, and a detection algorithm. The 

sensor nodes are attached to the cattle to transmit node numbers as well as timestamps 

to the gateways, which collect RSSI values and their corresponding transmitter nodes 

in a database. LoRa gateways are installed only in the fence area. The goal is to create 

a detection system that operates to monitor animals and will notify the farmer when 

an animal exits the fence area as shown in figure 3.1. However, this thesis covers up 

to the detection algorithm, with mobile notification left as future work. In addition, 

LoRa RSSIs collected at LoRa gateways are stored in SD cards and manually 

collected to form train and test datasets in this work, with automatic transmissions of 

these RSSIs to a database left as future work. 
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Figure 3.1:  Components of cattle rustling detection system based on LoRa RSSIs. 

 

Low-cost sensor nodes, gateway receivers and transmitter RPs have been 

created. Each sensor node is a wearable device attached to a buffalo, and consists of 

an Arduino Uno microcontroller, a 433-MHz RFM96W LoRa module, a real time 

clock DS1307 module, and a power bank. A sensor node and a transmitter RP have 

the same hardware as shown in figure 3.2. The use of RPs will be investigated in the 

chapter 5. A receiver gateway consists of a LoRa module, a power bank, and an SD 

card module to store RSSIs, transmitter node numbers, and timestamps as datasets. 

All the modules are connected using jumper wires and breadboards. In addition, the 

LEDs have been added as indicators that are turned on when data messages are sent or 

received. 
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gateway nodes based on LoRa hardware, (B) Components of a transmitter 

node, (C) Components of a receiver node. 

 

Figure 3.2: (A) Test equipment with four transmitter sensor nodes and five receiver  

 

 

 

 

 

3.2 Test Area 

The fence area for experiments has an area of approximately 25,500 m2. The 

area is approximately a rectangle surrounded by a fence as shown in figure 3.3, and is 

on a large outdoor farm with few trees and a swamp located in the suburb of 

Vientiane, Laos. There is a herd of buffaloes discharged daily to graze on the farm 

from morning until evening on each day. 
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four corners. 

Figure 3.3: Fence area for experiments, with latitude and longitude coordinates of the  

 

 

 

 

 

According to the thesis objectives mentioned in chapter 1, the goal is to find 

whether the location of each buffalo-attached transmitter sensor node is inside or 

outside the fence while buffaloes are discharged to graze. For practical use, the 

developed sensor node can be attached to a buffalo as a smart necklace to detect its 

current location. 

      For experiments, this work focuses on the right side of the fence area as 

shown in figure 3.3. The test area contains six zones. Three green zones are inside and 

three red zones are outside the fence. The sensor node for a smart necklace is a 

moving transmitter that communicates with a set of fixed receivers. There are five 

receivers mounted in different areas inside the fence as shown in figure 3.3. Both of 

receivers and transmitter are set to 1.5 m height from the ground. Each receiver, as 
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shown in figure 3.4, functions as a gateway to store RSSI values, transmitter node 

numbers and timestamps, to be used for localization by the k-NN algorithm, which is 

a data classification method that uses a set of datapoints and their classes to predict 

the class value for a new datapoint by considering its k nearest datapoints. The 

receiver locations are chosen to be inside the fence only for ease of maintenance and 

future setup of wireless connectivity. 

 

Figure 3.4: Receiver gateway node mounted on a solid base with cover protection. 
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CHAPTER  4 

RESULTS WITHOUT TRANSMITTER REFERENCE POINTS 

4.1 Experimental Results without Transmitter RPs 

 In each experiment, the transmitter sensor node was viewed as a buffalo 

grazing on the farm with no obstacle and referred to simply as the buffalo. The 

buffalo will send data messages, which contain transmitter numbers and timestamps 

to each gateway receiver inside the fence area, and the transmitted data together with 

RSSIs are saved in the SD card of each receiver. Data are collected by taking a 

random walk from zone 1, zone 2, and so on up to zone 6. Each zone is approximately 

a square area whose size is 25 m × 25 m. Data are gathered in each zone for 15 

minutes. Then, the same process is repeated in the next zone until all six zones are 

covered. The first experiment was performed in the afternoon of 11 November 2021, 

with example raw data in Table 4.1. A total of 545 datapoints is obtained from the 

buffalo in one and a half hour, where 280 datapoints are from the inside and 265 

datapoints are from the outside. Each of these datapoints contains RSSIs from all five 

receivers. Incomplete datapoints with some RSSIs missing are not taken into 

consideration. The entire dataset is randomly split into a train dataset and a test 

dataset, which contain 70% and 30% of the datapoints, respectively. Afterwards, we 

applied Python programming with the scikit-learn library (Geron, 2019) to analyze 

the data using the k-NN algorithm to decide, for each test datapoint, whether the 

buffalo is inside or outside the fence area at that time.  
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The results are presented in terms of the precision, recall, and accuracy 

defined as follows. A positive detection result refers to a buffalo being outside while a 

negative result refers to a buffalo being inside. Let TP and FP denote the percentages 

of true positives and false positives, respectively. Let TN and FN denote the 

percentages of true negatives and false negatives, respectively. Then, 

 

Precision =  
TP

TP + FP
 × 100%, (1) 

 

Recall =  
TP

TP + FN
 × 100%, (2) 

 

Accuracy =  
TP + TN

TP + FP + TN + FN
 × 100%. (3) 

 

 Using k = 11 for the k-NN algorithm and taking the averages from 10 runs, the 

values of precision, recall, accuracy are 97.87%, 100%, and 98.9%, respectively. Since 

the performance of the k-NN algorithm depends on the value of k, we vary k from 3 to 

21 to find its appropriate value. From the numerical results in figure 4.1, the value of k 

does not affect the accuracy significantly. Therefore, the middle value of k = 11 is 

selected for all upcoming experiments.  
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values of k for the k-NN algorithm. 

Table 4.1: Example raw data received on 11/11/2021. 

 

 
 

 

 

Figure 4.1: Precisions, recalls, and accuracies for the 11/11/2021 dataset for different                                      

 

 

 

 
 

 

Another experiment was performed on 18 January 2022 using the same 

method at the same location. This time, the obtained dataset contains a total of 476 

datapoints, including 231 datapoints from inside and 245 datapoints from outside. 

Based on the new dataset, the accuracy is 95.86%.  

Based on the datasets on two different days, the detection accuracy is quite 

satisfactory (more than 95%). However, it may not be practical to get a train dataset 
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datasets with (1) train and test datasets on the same day with 70% of 

datapoints for training (2) train and test datasets on different days. 

every day before using the system. Having the datasets from two days, the former is 

used for training and the latter is used for testing. In particular, from the 11/11/2021 

train dataset and the 18/1/2022 test dataset, the detection accuracy decreases to 

76.69%, as shown in figure 4.2. 

 

Figure 4.2: Precisions, recalls, and accuracies for the 11/11/2021 and 18/01/2022  

 

 

 

 

 

From the results in figure 4.2, it can be observed that the system cannot to 

detect accurately when train and test datasets are obtained on different days. This is 

because RSSIs from the same transmitter and receiver locations can change over time. 

Hence, in the next chapter, the use of transmitter RPs is proposed and investigated as 

a solution to perform data classification without a train dataset from a previous day. 

The proposed approach is appropriate in scenarios whose environments change over 

time, causing significant changes in RSSIs that are used for detection. 
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CHAPTER  5 

PERFORMANCE IMPROVEMENT USING TRANSMITTER REFERENCE 

POINTS 

5.1   Methodology with Transmitter RPs 

 

Transmitter RPs are fixed transmitters mounted inside and outside the fence 

area. They work in the same way as the buffalo transmitter. Each transmitter RP 

repeatedly sends its node number and timestamps to the gateway receivers. We 

presume that, when the buffalo comes close to a transmitter RP, the RSSIs from both 

transmitters would be close. Thus, it is possible to indicate whether the buffalo is 

inside or outside by comparing its RSSIs to those from all the RPs. Both sides of the 

fence (inside and outside) contain two RPs, which are mounted in the centers of zones 

1, 2, 5, and 6, as shown in figure 5.1. 

Figure 5.1: Deployment of transmitter RPs both inside and outside the fence area. 
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After four transmitter RPs has been made, experiments on two different days 

that are two weeks apart were performed. In particular, experiments were performed 

on 15 and 29 March 2022. On each day, the buffalo moved with a random walk from 

zone 1, zone 2, and so on up to zone 6. During the first three minutes in each zone 

that has a transmitter RP, the buffalo transmitter has been put close to the RP to 

calibrate both transmitters to have similar RSSIs before taking a random walk around 

the zone. The four transmitter RPs as well as the buffalo transmitter sent data 

messages to all receivers repeatedly. Waiting times between successive message 

transmissions are randomly selected from 3 to 5 second. The sizes of datasets 

received from both days are shown in Table 5.1. As before, incomplete datapoints 

with some RSSIs missing are not taken into consideration.  

Table 5.1: Number of datapoints from different transmitter nodes. 

 

 

 

In Table 5.1, the number of datapoints from the transmitter RPs is much 

higher than that from the buffalo transmitter because there are four RPs but only one 

buffalo transmitter. 

As specific example datapoints, figure 5.2 shows the first 200 datapoints from 

transmitter RP 1 on 15 March 2022. Each datapoint contains five RSSIs collected by 

all five receivers denoted by RX1 to RX5. Observe that the values are quite stable in 



 

 
 

36 

(denoted by RX1 to RX5) on 15 March 2022. 

the range of -70 to -40 dBm. The RSSIs are consistent with the fact that transmitter 

RP 1 is closer to RX1 and RX2 than to RX4 and RX5 while RX3 is in the middle. 

  
Figure 5.2: The first 200 datapoints from transmitter RP 1 to all five receivers  

 

 

 

 

Figure 5.3 shows the first 200 datapoints from the buffalo transmitter on 15  

March 2022. Compared to the datapoints from transmitter RP 1 in figure 5.2, the 

RSSIs vary significantly in the range of -90 to -40 dBm because the buffalo 

transmitter moved according to a random walk in each zone and moved across 

different zones. 
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(denoted by RX1 to RX5) on 15 March 2022. 

Figure 5.3: The first 200 datapoints from the buffalo transmitter to all five receivers  

 

  

 

 

5.2 Results with Transmitter RPs 

Using the datasets from both days as mentioned in Table 5.1, Python 

programming was applied to perform inside/outside detection and compute 

precisions, recalls, and accuracies using Eq. (1) to Eq. (3). First, without using 

datapoints from the transmitter RPs, the datapoints from the buffalo transmitter on 15 

March 2022 were used as a train dataset while the datapoints from the buffalo 

transmitter on 29 March 2022 were used as a test dataset. Then, on each day, the 

datapoints from the transmitter RPs were used as a train dataset while the datapoints 

from the buffalo transmitter were used as a test dataset. 
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datasets with (1) train and test datasets on different days (2) train and 

test datasets on the same day with datapoints from RPs for training. 

Figure 5.4: Precisions, recalls, and accuracies for the 15/03/2022 and 29/03/2022  

 

 

 

 

 

Figure 5.4 shows the accuracies for different cases of train and test datasets. 

The results indicate that using a train dataset from a previous day leads to a low 

accuracy of 45.99% even though the recall is close to 100%. The low accuracy is 

consistent with chapter 4, where the test dataset was taken on another day after the 

train dataset.  

When the datapoints from the transmitter RPs were used as the train dataset, 

the accuracy increases to 81.73% for the datasets on 15 March 2022, and 87.21% for 

the datasets on 29 March 2022.  These increases in detection accuracies demonstrate 

advantages of using the transmitter RPs when RSSIs from the same transmitter and 

receiver locations change over time. 

The results shown in figure 5.4 were obtained from applying the k-NN 

algorithm with k = 11. Figure 5.5 shows the detection accuracies using the transmitter 

RPs on 15 March 2022 as we vary k from 3 to 21. Over all, the accuracies do not 
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values of k for the k-NN algorithm. 

change significantly with k. A similar trend is observed for the results from 29 March 

2022.  Therefore, the middle value of k = 11 is selected for all upcoming experiments. 

 

Figure 5.5: Precisions, recalls, and accuracies for the 15/03/2022 dataset for different  

 

 

 

 

5.3   Performance Comparisons among Different Classification Algorithms 

Up to now, only the k-NN algorithm only has been used to classify between 

inside and outside locations. To further investigate the detection performance when 

the transmitter RPs are used, several well-known classification algorithms were 

considered, including support vector machine (SVM), decision tree and random 

forest. As for k-NN, these algorithms are available in the scikit-learn library of Python 

programming. 

The operating principle of each algorithm is explained as follows. In SVM, the 

5-dimensional space containing RSSI datapoints from five receivers is divided into 

two regions to separate datapoints from inside and outside RPs as much as possible. 

These two regions are then used to classify datapoints from a buffalo. Three different 

kernel functions are considered: linear, polynomial, and radial basis function (RBF) 
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RPs are used. 

(Geron, 2019). For the decision tree algorithm, RSSI datapoints from inside and 

outside RPs are used to develop a tree of decision rules that can later be used to 

classify datapoints from a buffalo. In the random forest algorithm, RSSI datapoints 

from inside and outside RPs are used to construct multiple decision trees that can later 

be used to classify datapoints from a buffalo through a majority vote based on the 

results from these trees. 

 

Figure 5.6: Accuracies from well-known classification algorithms when transmitter  

 

 

 

 

 

Fig 5.6 shows the accuracy of each algorithm for each day. From the 

accuracies in Fig. 12, k-NN and SVM (with RBF) outperform the other algorithms 

based on the datasets from both 15 and 29 March 2022, with approximately the same 

performances between k-NN and SVM (with RBF). In particular, the datasets on 15 

March 2022 give the accuracy of 86.89% from k-NN and 91.51% from SVM (with 

RBF) while the datasets on 29 March 2022 give the accuracy of 87.24% from k-NN 
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and 91.96% from SVM (with RBF). Therefore, either k-NN or SVM (with RBF) is an 

appropriate choice of a classification algorithm for our detection system. 

Between the two algorithms, k-NN is attractive due to its simple 

implementation. While SVM (with RBF) requires more computation on train datasets, 

it can also be attractive since performing the detection after training does not require 

high computational complexity. 
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CHAPTER  6 

CONCLUSION 

This thesis considers the problem of detecting whether a buffalo is inside or 

outside the fence area using LoRa RSSIs. Initial experiments indicated that high 

detection accuracies can be obtained from using 70% of datapoints as the train dataset 

and 30% of datapoints as the test dataset on each day. In particular, the k-NN 

algorithm with k = 11 yields the accuracy of 98.9% on 11/11/2021 and 95.86% on 

18/01/2022. Since it may not be practical to get a train dataset every day, using an 

RSSI dataset on a previous day (11/11/2021) as a train dataset and a test dataset on 

another day (18/01/2022) was tried and yielded a lower detection accuracy of 76.69%. 

Then, was proposed and investigated the use of transmitter RPs to detect 

whether a buffalo is inside or outside the fence area. In the proposed method, RSSIs 

from transmitter RPs are used as a train dataset while RSSIs from the buffalo 

transmitter are used as a test dataset. Experimental results on 15/03/2022 and 

29/03/2022 demonstrate that the proposed method yields the detection accuracy of 

81.73% on 15/03/2022 and 87.21% on 29/03/2022, which are significantly higher 

than the accuracy of 45.99% obtained from using train and test datasets from different 

days (15/03/2022 and 29/03/2022). This is because the use of RSSIs from transmitter 

RPs instead of RSSIs from a previous day as the train dataset allows the detection 

algorithm to adapt over time and provide higher detection accuracies in comparison to 

detection without using transmitter RPs. 

Finally, comparisons among well-known classification algorithms, including 

k-NN, SVM, decision tree, and random forest, indicated that k-NN and SVM (with 
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RBF) outperform the other algorithms and are therefore attractive classification 

algorithms for the developed detection system. 
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APPENDIX A 

 
 

 

Figure A.1: Variation of LoRa RSSIs when transmission parameters are adjusted 

 

 All experiments in this research have been based on using the default 

parameters in LoRa modules. To see the effects of adjusting LoRa parameters, 

experiments with different LoRa parameters have been conducted.  These 

experiments were done in the hallway of BU-CROCCS, which located on the sixth 

floor of the Engineering Building Bangkok University. LoRa parameters including 
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bandwidth (BW), coding rate (CR), and spreading factor (SF) are adjusted to test the 

stability of the LoRa RSSI values. The result of each test is compared to the default 

setting, which sets BW = 125000 kHz, CR = 4/5, and SF = 7. Each parameter is 

adjusted one by one and then tested for 5 minutes.  

Each test was based on line-of-sight transmissions in indoor situations with a 

distance of 50 m. Figure A.1 shows experimental results obtained. First, the BW is 

reduced from the default value of 125000 kHz to 10400 kHz, keeping the default 

values for the other parameters. Next, only the CR is changed from the default value 

of 4 (minimum) to 8 (maximum). Finally, only the SF is changed from the default 

value of 7 (minimum) to 12 (maximum). Note that each parameter adjustment reduces 

the bit rate. The goal is to find out whether a reduction in the bit rate could increase 

the stability of RSSI values. 

Over all, the results show that using a narrower bandwidth can make the LoRa 

RSSI values more stable, as can be observed in Fig A.1. Therefore, as a future 

research investigation, LoRa RSSI-based localization using small bandwidths is 

recommended.  
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APPENDIX B 

 

The default of each classification algorithms in the scikit-learn library 

1. Decision tree 

Decision tree classifier takes as input two arrays: an array X, sparse or dense, 

of shape (n_samples, n_features) holding the training samples, and an array Y of 

integer values, shape (n_samples,), holding the class labels for the training samples: 

>>> 
>>> from sklearn import tree 

>>> X = [[0, 0], [1, 1]] 

>>> Y = [0, 1] 

>>> clf = tree.DecisionTreeClassifier() 

>>> clf = clf.fit(X, Y) 

After being fitted, the model can then be used to predict the class of samples: 

>>> 
>>> clf.predict([[2., 2.]]) 

array([1]) 

 

2. Random forest 

A random forest is a meta estimator that fits a number of decision tree 

classifiers on various sub-samples of the dataset and uses averaging to improve the 

predictive accuracy and control over-fitting. The sub-sample size is controlled with 

the max_samples parameter if bootstrap = True (default), otherwise the whole dataset 

is used to build each tree. 

Examples: 

>>> from sklearn.ensemble import RandomForestClassifier 

>>> from sklearn.datasets import make_classification 

>>> X, y = make_classification(n_samples=1000, n_features=4, 

...                            n_informative=2, n_redundant=0, 

...                            random_state=0, shuffle=False) 

>>> clf = RandomForestClassifier(max_depth=2, random_state=0) 

>>> clf.fit(X, y) 

RandomForestClassifier(...) 

>>> print(clf.predict([[0, 0, 0, 0]])) 

[1] 

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
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3. Support vector machine  

A Support Vector Machine (SVM) is a very powerful Machine Learning 

model, capable of performing linear or nonlinear classification, regression, and even 

outlier detection. The objective of the support vector machine algorithm is to find a 

hyperplane in N-dimensional space (N — the number of features) that distinctly 

classifies the data points. 

Example of the SVM command in Python: 

Support vector machine linear 

from sklearn.svm import LinearSVC 

model = LinearSVC(loss='hinge', dual=True) 

model.fit(X_train, y_train) 

print_score(model, X_train, y_train, X_test, y_test, train=True) 

print_score(model, X_train, y_train, X_test, y_test, train=False) 

 

Support vector machine Polynomial 

from sklearn.svm import SVC 

# The hyperparameter coef0 controls how much the model is influenced 

by high degree ploynomials 

model = SVC(kernel='poly', degree=2, gamma='auto', coef0=1, C=5) 

model.fit(X_train, y_train) 

print_score(model, X_train, y_train, X_test, y_test, train=True) 

print_score(model, X_train, y_train, X_test, y_test, train=False) 

 

Support vector machine radial 

model = SVC(kernel='rbf', gamma=0.5, C=0.1) 

model.fit(X_train, y_train) 

print_score(model, X_train, y_train, X_test, y_test, train=True) 

print_score(model, X_train, y_train, X_test, y_test, train=False) 
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